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SUMMARY

The Rotorcraft Flight Simulation Computer Program C-81 is a multidisciplinary mathemati-
cal model that may be used to simulate 2 wide variety of helicopter or V/STOL aircraft
configurations using a digital computer. Aircraft performance, stability and control, and
maneuver characteristics, as well as rotor blade loads, may be estimated using this model.
The fuselage, main rotor, tail rotor, wing, clevator, finfrudder, jet thrust, and weapon
recoi! are treated as separate aircraft components, allowing detailed representation of the
aircrafe for design or detailed analysis applicasions. Six rigid-body fusclage degrees of
freedom and up to six rotor blade elastic degrees of freedom for cach of two rotors are
accounted for.

Input for the simulation is divided into logical blocks in an casy-to-understand format,
The rotor blads clastic degrees of frecdom are omitted if stiffness and mass properties
are not xnown. Output includes aircrafr trim attitude, control positions, performance,
rotor loads, stability and control characterisitics, and detailed maneuver response.

While correlatiun of the predicted results from the Rotorcraft Flight Simulation is
generally sausfactory, especially for single-rotor helicopters, no detailed comparison with
biade loads test data has been made. Current development of the analysis includes such
a corrclation as well as an investigation of advanced control systems, development of an
imprcved unsteady aerodynamic representation, the inclusion of a more detailed acro-
dynamic representation of all aircraft components, and the implementation of advanced

numerical techniques that will result in reduced run time..
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INTRODUCTION

The Rotorcraft Flight Simulation Computer Program C-81 is a highly versatile digital
flight simulator that may be used to study steady-state and mancuver performance, roior
loads, stability and control, aircraft attitude and flight path, gust response, and many
other aircraft characteristics. This report describes, without exhaustive analytical detail,
the history, content, use, and current development of the Rotorcraft Flight Simulation
program. The analysis and usc of the program are further explained in References 1
through 7.
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HISTORY

The C-81 family of helicopter flight simulation programs has been under development by
Bell Helicopter Company and the Government for the past decade {Figure 1). Through-
out this development, certain guidelines have been followed. First, the analysis is suffi-
ciently general to describe a wide variety of helicopter configurations (conventional,
compound, tandem, side-by-side) for a bread range of flighr conditions (hover, transition.
cruise, high speed, maneuver). The overall analysis has 2 uniform texture: i.c., the level
of complexity of the different phases (acrodynamic, dynamic, rotor analysis, etc.) is
uniform. The program is applicable to diverse types of analysis such as performance,
stability and control, and rotor loads. Finally, the program is user-oriented in terms of
preparing the mput data and interpreting the results. )

The first major step in computerized analysis was a digital program to determine the
overall helicopter performance and rotor blade bending moments for level-thght conditions.
Acrodynamic considerations included compressibility, stall, and reversed-flow effects from
two-dimensional airfoil test; separate treatment of specified radial segments with special
lift and drag characteristics; and procedures to balance al! forces and moments to satisfy
the requirements of trimmed fight. The intreduction of coupling between in-plane and
out-of-plane blade deflections in the roto. dynamic analysis significantly improved the
caiculation of natural frequencies and forae ® response for rotor systems with several com-
binations of number of bl les «nd tvpes of hub construction.

The next major development of the analytical simulation included the addition of a
mancuver capability with six degrees of frcedom for the helicopter fuselage. Definition
of the airframe was extended to include physical dimensions for cg location, mast length,
and tiit; and the sizes and locations of wings, levator, vertical fin, and pylon fairing.
Contributions o lift, drag, and side forces and 1o pitching, yawing, and rolling moments
were treated scparately for each acrodynamic surface to obtain a useful method of cal-
culating stability derivatives and manecuver capability. Control hinkage ratios, engine power
controls, and xternal gust disturbances were added to simulate a wide variety of VTOL
fnaneuvers.

Under the contract reported in Reference 2, the simalation was further expanded te
encompass all of the basic rotor¢raft configurations: single main retor plus antitorque

tail retor, tandem, side-by-side tilting rotor, and coaxial. The detailed aerodynamic and
dynamic treatment of the sccond rotor, plus provisions for locating, orienting, and con-
trolling both cf the rotors, led to an all-purpese, generalized analytical ability. Two-,
three-, and four-bladed rotors were considered for hub types that were either teetering,
gimbaled, articulated, or rigid (hingeless). The effects of gradual penctration of a shaped
gust field by the rotor disc were added to the analysis and evaluated durirg the course of
the study.

in 1969, under an Air Force contract, a version of the analysis was prepared with a
special treatment of the rotor dynamics to allow the study of slowed- and stopped-rotor
VTOL configurations. A time-variant analysis was added that accounts for the rigid-blade

2



flapping motions of up to, and including, seven blades while simulating tectering,
gimbaled, articulated, or rigid hub configurations.

A time-variant aeroclastic rotor response analysis based on the modal techvique was in-
corporated into th: program during a USAAMRDL-sponsored project, providing improve-
nents that are directed, principally, toward a better analytical capability for studies of

loads, vibrations, and transient acroelastic behavior of rotor systems.

AP A

;1

i

G

i

5

iy

i

|
i

"

s

1W’;
A

!

WO D b

Wl i




EETIT TN

!

lobhiiadens , o . Dty

‘10374 wowdopasg uonenwis g yedioey 1 andig

0961

SLOY

CTAMWYVSPE) wonepaio)
Sproct 1010y [FPOW PE-H

FICUNVVSN-Pg) siuawaaoadug
SSEPILAY U DIMTUAPOIDY

(Tauwvvsn-jiam4aucH)
ﬁCS:CU «vou:ﬁ>mg<

{1Icawvysn-Suooq)
sonuendpoay Kprassun

CICRIAVYSNod) 1010y 2Nsepoiay
UBITA DMLY,

(1Q14VVSN-{1og) vonvmung
1010y pjog-doig

(jg) sisdjeuy
Lupquag pajdnooun

(TauWY YSn-ilog)
asuodsay BN

(11) qosny uodromg
s3af *S10ANUUEA

(g} a-€
u1 ooy-o3epsng pridry

(1199) 1anaurpy pue wiiy, durld ZX
sonueukposoy Rupm odepasng

(jpg) sonueudqy 30109
Apraygsend

(j0q) osurwIz03Idg
opise|InIdy 1030y

o




PG

"

"

C

ik

1

)

it

?
hAYH

il A
i
A

il
!
)

DESCRIPTION OF MATHEMATICAL MODEL

RIGID BLADE ANALYSIS

The following description of the mathematical model applics to the versicn of the
Roturcraft Flight Simulation delivered under the gust response contract (Reference 2).

The aircraft fusclage is treated as a rigid body that is subject to gravity and applied
external forces and moments due to:

1. Fuseclage acrodynamics
2.  Main rotor acrodynamics

3. Tail rotor acrodynamics

b

Wing aerodynamics

Elevator aerodynamics

o

6. Finfrudder acrodynamics
7. - Auxiliary thrust
8. Weapon recoil force

These forces and moments, which act at input points of application, are transferred 1o
the aircraft cg and summed. For trimmed, level, 1g flight, the sum of the external
forces and moments and the weight must equai zero. During maneuvers, the sum is used
as the foicing function in the Euler form of the cquaticns of motion that are derived in
Reference 8.

Acrodynamic forces and moments due to the wing, finfrudder. fusclage, and elevator are
calculated from the lecai acrodynamic environment and input constants that provide a
curve fit to wind tunnei test data or to lift, drag, and momcnt data predicted by
analytical methods. The force and moment characteristics are generally represented as
functions of angle of atrack and Mach number with corrections applied for vawed flow
and interference cffects. The forces act at center-of-pressure locations specified by the
user.

The rotor strip theery acrodynamic calculations take into account an approximate
nonuniform inflow as well as velocities due to airspeed, arcraft pitch rate, rotor rpm.
and blade flapping. Only rigid blade flapping is included in the analysis. Blade force
coefficients are functions of angle of attack and Mach number and may be input in
tabular or curve-fit formats. Only blades with uvriform airfoil section from blade cutour
to blade tip may be represented.
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% DESCRIPTION OF MATHEMATICAL MODEL §
& RIGID BLADE ANALYSIS i
§ The following description of the mathematical model applics to the version of the %;
= Rotoreraft Flight Simulation deliveied under the gust response contract (Reference 2). |

=3

o

The aircraft fusclage is treated as a rigid body that is subject to gravity and applied
external forces and moments due to:

1. Fuselage acrodynsmics

2. Main rotor acrodynamics

3. Tail rotor aeredynamics

4.  Wing acrodynamics

Wﬁm ]

Elevator aerodynamics

o
b

R
ey I

6. Finfrudder acrodynamics

i,
v

7.  Auxiliary thrust

8. Weapon recoil force

These forces and moments, which act at input points of application, are transferred to
the aircraf: ¢g and summed. For trimmed, level, 1g flight, the sum of the external
forces and moments wnd the weight must equal zerc. During mancuvers, the sum is used
as the forcing function in the Euler form of the equations of motion that are derived in
Reference 8.

= Acrodvnamic forces and moments due to the wing, fin/rudder, fusclage, and clevator are

e calculated from the local acrodynamic environment and input constants that provide a

= curve fit to wind tunnel test data or to lift, drag, and moment data predicted by

E analytical methods. The force and moment characteristics are generally represented as

H functions of angle of attack and Mach number with corrections applied for yawed flow

% and interference effects. The forces act at center-of-pressure locations specified by the
user.

The rotor strip theory acrodynamic calculations take into account an approximare
nonuniform inflow as well as velocities due te airspecd, aircraft pitch rate, rotor rpm,
and blade flapping. Only rigid blade flapping is included in the aralysis. Blade force
cocfficients are functions of angle of attack and Mach number and may be input in
tabular or curvefit formats. Qnly blades with uniform airfoil section from blade cutout
to blade tip may be reoresented.
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ELASTIC BLADE ANALYSIS

1

The analysis developed under another Army contract differs from the rigid blade analysis
primarily in that treatment of rotor dynamucs. hub in-plane motion, shaft windup, and
rotor blade clastic bending is considered. The hub sitotion is represented by an upside
down pendulum with a torsional spring that is driven by the in-plane blade shears and by
the pitch and roll moments as shown for longitudinal motion in Figure 2.

MOMENT

IN-PLAKE =

SHEARS

PYLON ANGULAR DEFLECTION

PYLON N
PLYON DAMPING ON EFFECTIVE STIFFNESS

FUSELAGE AF] —e-

Figure 2. Model for Longitudinal Hub Motion.

The ability of the rotor shaft to twist in response to the applied in-plane torque is
simulatzd by assuming that at the bottom of the shaft there is an infinite torsional
inertia revolving at a constant speed.  Cond- ~ting this large inertia with the blade is 2
totsionally flexible shaft with an input spring rate. The torsional deflection of the hub
is then calculated from the applied in-plane blade moment.

In the rotor analysis, the clastic deformation of the rotor blades is approximated by a
finite series of products of funations that vary with radius {mode shapes) and time
(participation factors). Fer Z (the out-of-plane dci'ection), ¥ 7the in-planc deflection),
and 0 (the torsional deflection), -

Z(x8) = ZyIx)Gqy{0) + Zolx)galtt + oo o+ Zp(x)q,(0)

Y(xg) = Yp{x)q (0 + Valxiaplts + + - - -+ Yy(x)ga(t)

0(xx) = By(x)qyft) + Bp(x)qpies + - - . -+ Tplx)gp(t)




where 1 =€ n = 6 and n is the number of modes used.

The set of functions [Zi(x), Yi(x). B;(x)] is called the ith mode shape of the rotor blade.
Associated with each mode shape is a natural frequency, w; . Both the mode shapes
and the natural frequencies result from the study of the roter blade free vibration
cquations of motion and are used because. through them, the solution of the foiced
equations of motion for the blade is vastly simplified. The mode shape and natural fre-
quencies that are inputs to the Rotorcratt Flight Simulation are computed at the Eustis
Directorate by using the Myklestad program. Other installations could use other programs
as long as the modes and frequencies thus calculated are put into the Rotorcraft Flight
Simulation in accordance with the User’s Manual instrociions.

The displacements and velocitics duc to the hub meticn, shaft windup, and clastic blade
deflections are included in the calculation of blade acrodynatmnics, resulting in a coupled
acroclastic anzlysis. In addition, blade loads are calculated for trim and mancuver cases.
A harmonic analysis of trimmed flight loads is also provided.

INPUT

Input to the Rotorcraft Flight Simulation (Figure 3) is uscr-oriented, i.c., cither physical
measurements taken from the aireraft or curve fits to nondimensional acrodynamic data.
The program input. generally, includes:

1. Logic control cards

2. Aircraft gross weight; cg location; fuselage acrod namic center location;
acrodymamic curve-fit constants to fusclage lift, side force, and drag, and
pitch, roli, and yaw moment equations

3. Main and tail rotor physical description, aerodynamic data i tabular or
curve-fit form, blade frequencies and mode shapes, and pylon and shaft
stiffness and inertia characceristics

4. Wing, fin/rudder, and elevator center-of-pressure areas, actodynamic
curve-fit constants, incidence angles, and coefficients to approximate
interference effects

5. Auxiliary thrust location (if any), orientation, and level

6. Control linkages

7. Flight constants such as altitude, airspeed, and density and initial guesses
for trim control positions and aircraft attitude
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For mancuvers, the following additional data are required:

8. Weapon location and oricntation

9. Stability and control augmentation system (SCAS) transfer function constants

10.  Description of the mancaver

11. List of variables to be plotted as functions of time

The Myklestad program for calculating mode shapes and natural {requencies requires a
complete descriptior: of the distritution of rotor blade properties, including

Twist

Weight

Beamwise, chordwise, and torsional stiffness

Shear center and cg location
5. Beamwise and chordwise moments of inertia

Although most of the inputs are casily understood. many are not ncarly so casily
obtained. Expericnce has shown that at least a week will be required to compile an
operating deck if datz are rcadlly available. Estimation of parameters not available may
require considerable enginecring experience, supplementary cemputation, or refinement to
obtain correlation with experimental data.

AN A Sy

W

L R p

by b e e

T oo

I L




Y A0 IV A 500 8 S0 [Rr—

B 3 ey X ' . oy

‘uoneuis WAy yridsoloy oys jo nding pue anduy ¢ 2undiy

SOV0Y ONY JOINVWE03Y3d JONVHE04H3d
40108 INIONTINI AYOLSIH SISATVNY ALITIBVLS $av071 ¥0oLDY LAVHOHIY ONV HOL0W
3NIL H3ANINVN 14v80ULY

indino

{18-3)
NOILYTARIS 1HDIT3
14v¥089104

SNOILIONOD LHOITS

NOI1d143S30
104INOD 311VNOLAY wwﬁﬁmo%« SIIONINDINS TVHALYN ONV m_h_zcmu__._u_c&%z@u SOINVNAGONIV | | SYILNINI ONY
S34VHS 300N BOLOY 39v13803 | | LHO13M LivuomIv

ONY ‘ ,
39VINIT T041NCS Y360NY Nid "SUNIM AYL3N039 HOioH

10dN1

e SRR

{




PROGRAM USE

The analysis for the computer program consists of three major portions: trim, in which
the control positions, aircraft attitude, and blade flapping angles necessary to achieve a
stabilized flight condition are calculated; stability analysis, in which aircraft and rotor
stability derivatives and roots of the aircraft characteristic equations are obtained; and
mancuver, in which the response of the aircraft is computed for noncquilibrium flight
conditions. The following subsections describe uses of the program in cach of these
mzjor modes of operation.

TRIM

Trim values of corntrol positions, rotor flapping angles. and aircraft attitude are computed
for either level or climbing flight or for steady-state turns or steady “g” puli-ups. Acro-
dynamic forces and moments from the rctors, fusclage, and lifting surfaces are compared
with components of the aircraft weight (or steady-state ::--lar accelerations for steady-
statc muncuvers) for a given sct of control positions and aircraft attitude. Simultancously,
rotor flapping moments and accclerations are compared to dewermine if they are consistent
with the rotor blade root boundary conditions. If an equilibrium state does not result,

the required changes in the independent variables are computed.

If it is assumed that for Z-force, Z = Z(CP, F/AC, LC, P, AIMR, BIMR, AITR, BITR,
o, ¢

where Ccp
F/AC

LC

P

AIMR

BIMR

AlITR

B1ITR

e

L ]

collective pitch

fore-aft cyclic

lateral cyclic

pedal

main roter longitudinal flapping

main rotor lateral flapping

tail rotor longitudinal flapping

tail rotor lateral flapping

fuselage pitch angle

fusclage roll angle (or ¥ = yaw angle)

wow oW onunnonn

and that yaw angle is an input while roll angic is a variable, then

=22 A 9Z_ 9z
AZ = 35 ACP + gl AF/AC + e ALC + 58 AP +

3z 2z
aBimMr ABIMR + 539 TR

AAIMR

—0Z
JAIMR

oZ 9z
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When similar equations are written for the other aircraft forces and momants and the
flapping moments for both rotors and are collected in matrix form, the following
equation results:

10 X 10 WX1 10 X1
(Partial derivative matrix) (Controls change matrix) = -(Emror matrix)

In the C-81 trim procedure, the error matrix is computed from the previous trim
iteration; the partial derivative matsix is evaluated numerically, and this matrix equation
is solved to find changes to the independent control variables that would produce an
exact trim condition if the system were linear. Since it is not. more than onc iteraticn
is required; but 5 to 20 iterations are usually sufficient to obtain a force balance.
Repetition of this iterative process eventually provides values of the independent variables
required for steady-state flight. Trim values of aircraft performance paraneters and rotor
loads are then printed out. A multiple case capability permits incremental changes ia
input parametcrs for cfficient examination of the cffects of speed, gross weight, rpm, etc.
A sample of the trim output for the aeroclastic version of the program is shown in
Figure 4.
This output suggests the following uses of the program:

Prediction of rotor performance and l~ads

Prediction of contrc! posicions

Prediction of speed-power polars

Prediction of aircraft attitude versus speed

Definition of required control range

Definition of cg limits ard maximum gross weight for stablc flight

Prediction of steady-state flight envelope considering rotor stall and loads,
tail rotor and stabilizing surface sizes, and power available

Optimum rotor design

Analysis of lift sharing for comjound helicopters

Prediction of increases in performance due to advanced airfoils

Evaluation of propulsive force requiremeats and effects of auxiliary propulsion

Prediction of aircraft turn and climb performance




T a———

13.  Design of tail rotor and control surface sizes

14.  Design of control couplings for best attitude versus speed

STABILITY AND CONTROL

A stability analysis is available for use at each trim condition and for userspecified times
during a mancuver. Small-perturbation stabilility and control characteristics are predicted
taking into account six fully coupled fuselage degrees of freedom plus pylon and rotor
degrees of freedom. Claracteristics for pitch attitude response to fore-aft cyclic, roll
attitude response to lateral cyclic, and yaw angle rate response to pedal inpuc are also
calculated. A sample of the output from the stability analysis section of the program
is shown in Figure 5.
Uses of the stability and control section of the program irclude:

Prediction of stability derivatives

Orientation and sizing of stabilizing surface

Design of automatic control system

Definition of aircraft stability limits

Prediction of control power

Analysis of control gearing design

Sclection of optimal hub restraint

Prediction of control margin

Determination of effects of lift sharing on compound helicopter stability

Design of integrated control system

MANEUVER

In the manecuver section, aircraft response to nonequilibrium flight conditions is calcu-
lated. In this section, the program is a truc digital flight simulator, solving a highly
coupled and nonlincar set of cquations describing the dynamics and acrodynamics of
the aircraft to predict its time-variant behavior. Maneuvers of the greatest interest to
most program uscrs are movetneats of the controls, encounters with vertical or horizontal
gusts, changes in engine torque or auxiliary thrust, weapon fire, and activation or

12
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deactivation of the automatic stability and control system. Any of the allowabie maneu-
vers may be used separately or in combination.

The user should be forewarned that maneuvers can consume large quantities of central
processing unit (CPU) time on a computer. Whereas determination of a trim condition
generally requires only 3 or 4 minutes, simulation of a 3- or 4-second real-time mancuver
may require 45 minutes of computer time on an IBM 360. Also, simulation of, say, a
pull-up will usually involve running cf the mancuver several times. Since flight path is
not an’input, the user must estimat: the control motions required to produce thie desired
maneuver. The first case output is then usced to refine the input for the second case, and
so forth, uatil the desired mancuver is obtuined. A “restart” feature in the newer ver-
sions of the program allows the u.er to start the mancuver for the seccond case at any
real-time point calculated in the first case, thus reducing tocal computer time (and cost;.
A sample of the program mancuver output is shown in Figure 6.

Following are a few of the uses of the maneuver section of the Rotoreraft Flight Simu-
lation:

Determine aircraft gust response

Determine mancuver loads and biade response

Study minimum distance to clear an obstacle

Study reaction of the aircraft to firing on-board weapons
Exaraine large-perturbation response to control inputs
Simulate autorotations

Determine thrust and power mancuver limits

Simulate tactical mancuvers

Determine total aircraft stability by cxamining time histories
Control surface sizing for improved mancuverability

11.  Study methods for maximum deceleration

Reference 9 cxplains the use of the Rotorcraft Flight Simulation for aircraft cvaluation.
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VALIDITY OF MATHEMATICAL MODEL

It must be emphasized that the validity of the correlation presented here, as well as the
mathematical model of any other aircraft or rotor system, depends on two facrors:

1. The adequacy of the techni .al analysis as implemented in the computer
program.

2. The validity of the input data used to represent the physical characteristics
of a particular aircraft.

References 1, 2, and 3 present the analysis in sufficient detail for the engineer to under-
stand the assumptions it contains. The input deck also contains assumptions that are not
always clearly visible from the computed results.  Experience has shown thar in a large
percentage of cases, failure of the Rotorcraft Flight Simulation to obtain a trim solution
or tc provide adequate correlation with test data is due to inadequate input data. The
most frequently made and most successfully used suggestion for users cxperiencing diffi-
culty in running the program is “Check your inpur data.” In other v -ds. it takes

LR

aliny g D

il 1515y

AR

C-81 + Input Data = Math Madel

to represent the airciat, and the user must do his par:.

CORRELATION WITH TEST DATA

TN S A
o

GREien]

The correlation data presented in this section demonstrate some of the virtues and vices
of the Rotorcratt Flight Simulation. They also reflect the ability of the user to prepare
input for the program.

L

Performance

The 1/7.5 scale CH-47C model rotor correlations presewnced in Figures 7 through 12 are
instructive, since they isolate the rotor and require the minimum amount of input data.
Although the predicted slopes of the thrust-control axis angle curves in Figures 7 and 10
do not agree well with test results (possibly due to wake cffects), the correlations in the
other figures of this set show that performance prediction, in general. is good and that
prediction of gross or total aircraft paramcters is likely .o be acceptable. These curves
also show the cffect of the Bocing-developed dynamic airfoil prediction method on the
overall analysis.

|0
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Ay




Figures 13 through 16 show that total aircraft level-flight performance prediction is very
good for single-rotor aircraft. However, Figures 17 and 18 show that for tander.rotor
helicopters, correlation is good only for the forward rotor. The interference csfects on
the aft rotor are not accounted for in the analysis. A simple interference correction
developed by Boeing-Vertol results in a much improved power correlation.

Loads

Looking at the rotor analysis in greater detail, Figures 19 through 26 show that although
peak-to-peak loads are predicted accurately, the azimuthal variations of both loads and
lift coefficient lack agreement with experimental wave foras. This may again b. due to
wake approximations that predict a more regular inflow than actually cxists.

Maneuver ;

The predicted mancuver for 4 TH47C pull-up in Figure 27 agrees well wit.. flight tcst
data. In this figure, the three-per-rev has been removed from the test data vy filtering,
while it has not been removed from the computed results. The Bell Helicopter Comnany
Model 583 pitch response correlation shown in Figure 28 shows a similar degree of
correlation.

Stability and Control

The Rotorcrafs Flight Simulation has been used extensively with a high degree of con-
fidence by Bell Helicopter Company to predict aircraft stability and control characteristics
for a number of years. Figures 29, 30, and 31 show typical stability and control corre-
lation with flight test data. The good agrecment between theorctical and flight test data
shown in these figures suggests that Bell’s confidence in this arca of the analysis was

justified.

s

FUTURE CORRELATION i;%
Several detailed and systematic correlation efforts using the Rotorcraft Flight Simulation %
have been planned for the near future. The furst is the Bell Helicopter Company correla- g
tion with ¥ 34 model retor data mentioned in the following section. In conjunction =
with the high-specd mancuverability flight test of their fiex-beam (hingeless) rotor system, =
Bell will also correlate the C-81 predicted aircraft performance and loads with the test 2
data. =
E

A third corrclation will be conducted by the Eustis Directorate staff in conjunction with =
the mancuverability and flight loads flight test of the AH-1G to be conducted for the E
Government by Bell. This cffort will follow the 2.ycar flight st program that is =
scheduled to start in the ncar future. E
-
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LEGEND
O WODEL ROTOR DATA
= == BASIC C-81

= C-81 WITH RADIAL FLOW
AND UNSTEADY AERO

TR RN

e e A

o.“ -  § ) 3
TEST CONDITIONS 6 i
_ p' = 0,35 3
12k n!:’= 500 FPS
: M(1) (s0) = 0-8
- ,
= e
o -
A=
- ,
= :
w :
o 0.0 i
i
m -
[TF] }
b4 :
o -
—  0.06
(7]
=2
[+ 4
=
oo
& 0.0 )
’- =
e 3
[ £ -

CONTROL AXIS ANGLE (agp) - DEG

Figure 7. Model Rotor Correlation With Rigid Blade Rotor
Theory: Rotor Thrust vs Control Axis Angle.
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LEGEND

O MODEL ROTOR DATA
== BASIC C-81 i
~me= C-81 WITH RAGIAL FLOW : B

= C-81 ¥ITH RADIAL FLOW 7 : S
AND UNSTEAUY AERO .

0.14 T
TEST CONDITIONS o
u'=0.35 ‘ o .
0.12F g = sc0 FPS -
%1y (s0) =08 V. -
- -
‘ &7 o
0.10 4 ]
7,
of D =

0.08

PRACTICAL OPERATING
RANGE OF ROTORCRAFT

0.05 ! i"r —

ROTOR THRUST COEFFICIENT (Cy/o)

¢ ‘
0.04 '
0.02
o P =
-32 -28 -24 -20 -16 -12 -8 -4 : 2

A L D Y R M e

CONTROL AXIS ANGLE (agp) - DEG

Figute 10. Model Rotor Correlation With Elastic Blade Rotor
Theory: Rotor Thrust vs Control Axis Angle.
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SHAFT HORSEPOWER REQUIRED

C¥ = 9500 8
€6 = 134 IN, FLT 39A-8
ALT = 2000 FY RPR = gg00

O TEST DATA = C-81 RESULTS

Pd

| o ot

AIRSPEED (Vypyp) - KT

Figure 15. UH-1D Level-Flight Performance Correlation.

LEGEND
O UR-1N TEST DATA
- amee BASIC C-B1

= C-81 WITH RADIAL FLOW
AND UNSTEADY AEROD

i ] |
FLISHT CONDITIONS
o= 188 f08
s 9,508 18
Npx 5,833 FT
nut = 1°¢
c'/’= ..

®

Fol
N\

ENGINE QUTPUT SHAFT HORSEPOWER

o
Seo9,

1) 7] 1]
TR'E AIRSPEED - KT

i

lt " l'lS
ADVANCE RATIO (')

Figure 14. Corelation of Theory With UH-1H Test Data.
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ALTITUDE = 5000 FY sV = 0150 LB
= C-§1 RESULTS + 5% XNSH LOSS

O TEST DATA, USAATA ENSINEERING FLIGNT TEST
AH-1G, PHASE D, PART 2, PERFORMANCE

B

ENGINE SHAFT HORSEPONER

-

" " 1] 128

AIRSPEED (Vypyg) - KT

Figure 15. AH-1G Level-Flight Performance Correlation.

o= 250818 f= 11,735 SO FT
O TEST 04k === -8 RESULTS

SHAFT HORSEPOWER

-
9

] L] n
TRUE AIRSPEED - XY

IRETTIAT)

Figure 16. AH-1] Level-Flight Performance Corrclation.
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LOCAL LIFT COEFFICIENT (C,) - ND

LOCAL LIFT COEFFICIENT (Cp) - ND

T
R S s

TEST CONDITIONS

O NODEL ROTOR VEST DATA Cy/e = 0.004
== w=e=BASIC C-81 p= 0.35
e C-81 WITH RADIAL FLOW Qk = 500 FPS
AND UN AERD =
D UNSTEADY AE Moy oy 708
2
o%o 0
o] ° o4
. )
L}
(o) - 0
0 © 0 120 180 200 20 280 220 360
AZIMUTH POSITION (y) - DEG
Figure 19. Model Rotor Corrclation With Azimuthal Coefficient-of-Lift
Variation at 0.75 Radius (Cplo = 0.074).
LEGEND

© MODEL ROTOR TEST DATA
=== BASIC C-01

o= {-81 WITR RADIAL FLOW
AND UNSTEADY AERO

3
TEST CONDITIONS
c‘vlﬂ = B.‘l‘
2 ,‘. = 0.35
ar = 500 FPS
S "1y 80y = 0.8 9-
! ?.\\\ p
0
] o 8 120 160 208 40 0 320 360

AZIMUTH POSITION (y) - DEG

Figure 20. Modzl Rotor Corrclation With Azimuthal Cocfficient-of-Lift
Variation at 0.75 Radius {Cy/o = 0.114).
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Figure 26. UH-1T> Oscillatory Load Variation With Speed.
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Figure 27. Correlation of Theory With CH-47 Pull-up Mancuver.
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CURRENT DEVELOPMENT

UNSTEADY AERODYNAMIC EFFECTS

Vertel Division, The Bocing Company (under Contract DAAJ02.71-C-0045) has developed
for use with the Rotorcraft Flight Simulation, methodology for evaluating and predicting
the acrodynamic force and moment coefficients of an airfoil in an unsteady flow environ-
ment. The method is especially useful, since it is not dependent on constants that must i
be derived from wind tunnel tests for each new airfoil shape. The analysis has been :
incorporated into the 1971 CDC 6600 version of the program, and the finai report will
be published in the near future. The analysis will be included in the 1972 version of the
program as an in-house project during 1973.
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HELICOPTER MATHEMATICAL MODELING FOR CONTROL SYSTEMS

b kg sl 2 e

Under a contract to Honeywell, Inc. (DAAJ02-71-C-0053), an improved mathematical tool
tc evaluate future helicopter control systems is being developed. The program will be
extended to include the capability to simulate fluidic stability augmentation systems,
clectronic sutopilot systems, and control moment gyros. The contractor will also provide
a genesal optimal control system design for demonstration with the program. The program
analysis will be extended to calculate linear data for lincar analysis and design and a trim
procedure that facilitates convergence.
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ROTORCRAFT FLIGHT SIMULATION WITH AEROELASTIC ROTOR REPRESENTA-
TION CORRELATION

i
i

Bell Helicopter Company (under Contract DAAJ02-72-C-0086) will establish the capability
of the program to predict helicopter rotor performance and loads and will isolate areas of
the rotor analysis that need refinement. This will be accomplished by performing a corre-
lation study in conjunction with the H-34 model rotor wind tunnel tests to be conducted
by Sikorsky Aircraft uader Contract DAAJ02-72-C-0026. Pretest predictions will be made
to cstablish the ability of the program to predict rotor performance and loads from design
data. Additional correlation will be performed after the test so that exact test points may

be matched.
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IMPROVED AERODYNAMICS AND AERGELASTIC REPRESENTATION FOR THE
> ROTORCRAFT FLIGHT SIMULATION

R A e e

&
=3 Under Contract DAAJ02-72-C-0798, Bell Helicopter Company will improve the program
B in the areas of acrodynamic representations and numerical integratior: technigues. New or e
3 improved methods for mathematically modeling the acrodynamic forces and moments 3
3 acting on 3 helicopter fusclage, stabilizing surfaces, wings, cxternal stores, and rotor blades 3
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will be developed. Mathematical techniques for solving sets of differential equations

typical of those found in helicopter aeroelastic analyses will also be studied. A more
efficient program able to model more types of aircraft in a larger number of tactical
maneuvers will result from this program.
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FUTURE WORK

It is apparent that the analytical sophistication in at least two areas of the program does
not match the refined aeroelastic rotor analysis. That is, the program is not of totally
uniform texture. The first is in the representation of the rotor inflow and wake. The
simplified equations expressing inflow velocity as a function of radius, azimuth, thrust,
and flight path are not adequate to predict rotor performance and loads at low airspeeds.
Rotor/rotor, rotor/wing, and rotor/tail interference effects all need to be predicted more
accurately for loads and stability and control.

The other nonuniform area of analysis is in fuselage dynamics. The present rigid-body
assumption should be replaced with an elastic fuselage representation. Studies of air-
craft vibration levels could be performed using the program if an elastic fuselage repre-
sentation were added. This addition would also permit more accurate prediction of tail
rotor angle of astack that is necessary for all tail rotor investigations.
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